Slash Documentation
Release 1.14.0

Rotem Yaari

Feb 22, 2023

Contents

1 What is Slash? 1
2 Diving in 3
2.1 AsaTest Author e 3
2.2 AsaFramework Developer e e e e e 3
3 Table Of Contents 5
3.1 Getting Started with Slash e 5
3.2 Running TestS o v o o e e e e e e e e e e e e e 10
3.3 Test Parametrization i e e e e e e e e e e e e e e e e e e 12
34 TestTags o o oo e e 15
3.5 TestFiXtures o i i e e e e 16
3.6 Assertions, Exceptions and Errors L e e 21
37 WarNINGS v v o e 26
3.8 Customizing and Extending Slash e 27
3.9 Configuration L e e e e e e e e e e e e e 32
310 Logging o o e e e e e e e e e 44
3.11 Saving TestDetails L e 46
312 HOOKS . . . o o e e e e e e e e e 47
313 PIugins oo e e e e e e e e e e e e 51
3.14 Built-in Plugins L L e e e e e e 55
3.15 SlashInternals e e e e e e e 57
3.16 Misc. Features e 58
3.17 Advanced Use Cases v o v v v i it e e e e e e e e 58
3.18 CookboOK e e e e e 60
3.19 FAQ . . . e e e e e e 62
3.20 APIDocumentation i i e e e e e e e e e e e e e e 62
321 Changelog o o e e e e e e e 72
322 Development e e e e e e 84
3.23 ContribUtOrS v o e e e e e e e e e e e e e e e 84
3.24 Unit Testing Slash o L e e e e 85
3.25 Parallel Test Execution 0 e e e e e 87
4 Indices and tables 89
Python Module Index 91

Index

93

CHAPTER 1

What is Slash?

Slash is a testing framework written in Python. Unlike many other testing frameworks out there, Slash focuses on
building in-house testing solutions for large projects. It provides facilities and best practices for testing complete
products, and not only unit tests for individual modules.

Slash provides several key features:

* A solid execution model based on fixtures, test factories and tests. This provides you with the flexibility you
need to express your testing logic.

» Easy ways for extending the core functionality, adding more to the global execution environment and controlling
how your tests interact with it.

* A rich configuration mechanism, helping you setting up your environment parameters and their various flavours.

* A plugin architecture, greatly simplifying adding extra functionality to your framework.

Slash Documentation, Release 1.14.0

2 Chapter 1. What is Slash?

CHAPTER 2

Diving in

2.1 As a Test Author

If you only want to write tests for running with Slash, you should head first to the Writing Tests section which should
help you get started.

2.2 As a Framework Developer

If you are looking to integrate Slash into your testing ecosystem, or want to learn how to extend its functionality and
adapt it to specific purposes, head to the Customizing and Extending Slash section.

Slash Documentation, Release 1.14.0

4 Chapter 2. Diving in

CHAPTER 3

Table Of Contents

3.1 Getting Started with Slash

3.1.1 Writing Tests

Slash loads and runs tests from Python files. To get started, let’s create an example test file and name it
test_addition.py:

test_addition.py
import slash

def test_addition():
pass

As you can see in the above example, Slash can load tests written as functions. Simlarly tounittest and py.test,
only functions starting with the prefix test_ are assumed to be runnable tests.

3.1.2 Running Tests

Once we have our file written, we can run it using slash run:

$ slash run test_addition.py

There’s a lot to cover regarding slash run, and we will get to it soon enough. For now all we have to know is that
it finds, loads and runs the tests in the files or directories we provide, and reports the result.

A single run of slash run is called a session. A session contains tests that were run in its duration.

Slash Documentation, Release 1.14.0

Debugging

You can debug failing tests using the ——pdb flag, which automatically runs the best available debugger on exceptions.
You can also filter the exceptions which run the debugger by using ——pdb-filter in addition to the ——pdb flag.
See also:

Handling and Debugging Exceptions

3.1.3 Assertions and Errors

Tests don’t do much without making sure things are like they expect. Slash borrows the awesome technology behind
py.test, allowing us to just write assert statements where we want to test conditions of all sorts:

test_addition.py

def test_addition():
assert 2 + 2 ==

Slash also analyzes assertions using assertion rewriting borrowed from the pytest project, so you can get more details
as for what exactly failed.

See also:
Assertions, Exceptions and Errors

3.1.4 Test Parameters

Slash tests can be easily parametrized, iterating parameter values and creating separate cases for each value:

@slash.parametrize('x', [1, 2, 31)
def test_something(x):
use x here

For boolean values, a shortcut exists for toggling between True and False:

@slash.parameters.toggle ('with_power_operator')
def test_power_of_two(with_power_operator):

num = 2
if with_power_operator:
result = num %% 2
else:
result = num % num

assert result ==

See also:

Test Parametrization

3.1.5 Logging
Testing complete products usually means you may not have a second chance to reproduce an issue. This is why Slash
puts a strong emphasis on logging, managing log files and directories, and fine tuning your logging setup.

Slash uses Logbook for logging. It has many advantages over Python’s own 1ogging package, and is much more
flexible.

6 Chapter 3. Table Of Contents

http://pytest.org
http://logbook.pocoo.org

Slash Documentation, Release 1.14.0

Slash exposes a global logger intended for tests, which is recommended for use in simple logging tasks:

import slash

def test_1():
slash.logger.debug("Hello!")

Console Log

By default logs above WARNING get emitted to the console when slash run is executed. You can use -v/-q to
increase/decrease console verbosity accordingly.

Saving Logs to Files

By default logs are not saved anywhere. This is easily changed with the -/ flag to slash run. Point this flag to a
directory, and Slash will organize logs inside, in subdirectories according to the session and test run (e.g. /path/
to/logdir/<session id>/<test id>/debug.log).

See also:
Logging
3.1.6 Cleanups

Slash provides a facility for cleanups. These get called whenever a test finishes, successfully or not. Adding cleanups
is done with slash.add cleanup ():

def test_product_power_on_sequence () :
product = .
product ..plug_to_outlet ()
slash.add_cleanup (product.plug_out_of_outlet)
product .press_power ()
slash.add_cleanup (product.wait_until_off)
slash.add_cleanup (product.press_power)
slash.add_cleanup (product.pack_for_shipping, success_only=True)
product .wait_until_on()

Note: When a test is interrupted, most likely due to a KeyboardInterrupt, cleanups are not called unless added
with the critical keyword argument. This is in order to save time during interruption handling. See interruptions.

Note: A cleanup added with success_only=True will be called only if the test ends successfully

Cleanups also receive an optional scope parameter, which can be either ' session', 'module' or 'test' (the
default). The scope parameter controls when the cleanup should take place. Session cleanups happen at the end of
the test session, module cleanups happen before Slash switches between test files during execution and fest cleanups
happen at the end of the test which added the cleanup callback.

3.1. Getting Started with Slash 7

Slash Documentation, Release 1.14.0

3.1.7 Skips

In some case you want to skip certain methods. This is done by raising the SkipTest exception, or by simply calling
slash.skip_test () function:

def test_microwave_has_supercool_feature():
if microwave.model () == "Microtech Shitbox":
slash.skip_test ("Microwave model too old")

Slash also provides slash.skipped (), which is a decorator to skip specific tests:

@slash.skipped ("reason")
def test_1():
#

@slash.skipped # no reason
def test_2():
#

In some cases you may want to register a custom exception to be recognized as a skip. You can do this by registering
your exception type first with slash. register skip exception ().

3.1.8 Requirements

In many cases you want to depend in our test on a certain precondition in order to run. Requirements provide an
explicit way of stating those requirements. Use slash. requires () to specify requirements:

def is_some_condition_met () :
return True

@slash.requires (is_some_condition_met)
def test_something():

Requirements are stronger than skips, since they can be reported separately and imply a basic precondition that is not
met in the current testing environment.

slash.requires can receive either:
1. A boolean value (useful for computing on import-time)
2. A function returning a boolean value, to be called when loading tests

3. A function returning a tuple of (boolean, message) - the message being the description of the unmet requirements
when False is returned

When a requirement fails, the test is skipped without even being started, and appears in the eventual console summary
along with the unmet requirements. If you want to control the message shown if the requirement is not met, you can
pass the message parameter:

@slash.requires (is_some_condition_met, message='My condition is not met!")
def test_something() :

Note: Requirements are evaluated during the load phase of the tests, so they are usually checked before any test
started running. This means that if you’re relying on a transient state that can be altered by other tests, you have to use

8 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

skips instead. Requirements are useful for checking environmental constraints that are unlikely to change as a result
of the session being run.

3.1.9 Storing Additional Test Details

It is possible for a test to store some objects that may help investigation in cause of failure.

This is possible using the slash.set_test_detail () method. This method accepts a hashable key object and
a printable object. In case the test fails, the stored objects will be printed in the test summary:

def test_one():
slash.set_test_detail('log', '/var/log/foo.log')
slash.set_error ("Some condition is not met!")

def test_two():

Every test has its own unique storage, so it's possible to use the same key in_
—smultiple tests

slash.set_test_detail('log', '/var/log/bar.log')

In this case we probably won’t see the details of test_two, as it should finish successfully.

slash.set_test_detail (key, value)
Store an object providing additional information about the current running test in a certain key. Each test has its
own storage.

Parameters
* key — a hashable object

* value — can be either an object or a string representing additional details

3.1.10 Global State

Slash maintains a set of globals for convenience. The most useful one is slash. g, which is an attribute holder that
can be used to hold environment objects set up by plugins or hooks for use in tests.

3.1.11 Misc. Utilities

Repeating Tests

Use the slash. repeat () decorator to make a test repeat several times:

@slash.repeat (5)
def test_probabilistic():
assert still_works ()

Note: You can also use the ——repeat-each=X argument to slash run, causing it to repeat each test being loaded
a specified amount of times, or ——repeat—-all=X to repeat the entire suite several times

3.1. Getting Started with Slash 9

Slash Documentation, Release 1.14.0

3.2 Running Tests

The main front-end for Slash is the slash run utility, invoked from the command line. It has several interesting
options worth mentioning.

By default, it receives the path to load and run tests from:

$ slash run /path/to/tests

3.2.1 Verbosity

Verbosity is increased with —v and decreased with —g. Those can be specified multiple times.

In addition to the verbosity itself, tracebacks which are displayed at the session summary can be controlled via tha
—-—tb flag, specifying the verbosity level of the tracebacks. 0 means no tracebacks, while 5 means the highest detail
available.

See also:
Logging
3.2.2 Loading Tests from Files

You can also read tests from file or files which contain paths to run. Whitespaces and lines beginning with a comment
will be ignored:

$ slash run -f filel.txt —-f file2.txt

Lines in suite files can optionally contain filters and repeat directive.

Filter allows restricting the tests actually loaded from them:

my_suite_file.txt

this is the first test file

/path/to/tests.py

when running the following file, tests with "dangerous" in their name will not be_
—loaded

/path/to/other_tests.py # filter: not dangerous

See also:
The filter syntax is exactly like —k described below

Repeat allows to repeat a line:

my_suite file.txt

the next line will be repeated twice
/path/to/other_tests.py # repeat: 2

you can use filter and repeat together
/path/to/other_tests.py # filter: not dangerous, repeat: 2

3.2.3 Debugging & Failures

Debugging is done with ——pdb, which invokes the best debugger available.

Stopping at the first unsuccessful test is done with the —x flag.

10 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

See also:
Handling and Debugging Exceptions

3.2.4 Including and Excluding Tests

The -k flag to slash run is a versatile way to include or exclude tests. Provide it with a substring to only run tests
containing the substring in their names:

’$ slash run -k substr /path/to/tests

Use not X to exclude any test containing X in their names:

’$ slash run -k 'not failing_' /path/to/tests

Or use a more complex expression involving or and and:

’$ slash run -k 'not failing_ and components' /path/to/tests

The above will run all tests with component s in their name, but without failing_ init.

3.2.5 Overriding Configuration

The —o flag enables us to override specific paths in the configuration, properly converting their respective types:

$ slash run -o path.to.config.value=20

See also:

configuration

3.2.6 Running Interactively

As a part of the development cycle, it is often useful or even necessary to run your infrastructure in interactive mode.
This allows users to experiment with your framework and learn how to use it.

Slash supports running interactively out-of-the-box, using the —1 flag to slash run:

$ slash run -i

This will invoke an interactive IPython shell, initialized with your project’s environment (and, of course, a valid Slash
session).

By default, the namespace in which the interactive test runs contains all content of the slash.g global container.
You can disable this behavior by setting interactive.expose_g_globals to False.

See also:

Controlling Interactive Namespaces from Plugins

3.2.7 Resuming Previous Sessions

When you run a session that fails, Slash automatically saves the tests intended to be run for later reference. For quickly
retrying a previously failed session, skipping tests which had already passed, you can use slash resume:

3.2. Running Tests 11

Slash Documentation, Release 1.14.0

$ slash resume -vv <session id>

This command receives all flags which can be passed to slash run, but receives an id of a previously run session
for resuming. All unsuccessful tests are then rerun in a new session. You can control whether to attempt failed tests
first or planned (not started) tests through the ——failed-first and ——unstarted-first command-line flags
respectively.

3.2.8 Rerunning Previous Sessions

You can rerun all the tests of a previous session, given the session’s tests were reported. This might be helpful when
reproducing a run of specific worker, for example. You can use slash rerun:

$ slash rerun -vv <session id>

This command receives all flags which can be passed to slash run, but receives an id of a previously run session
for rerunning.

3.3 Test Parametrization

3.3.1 Using slash.parametrize

Use the slash.parametrize () decorator to multiply a test function for different parameter values:

@slash.parametrize('x"', [1, 2, 31)
def test_something(x):
pass

The above example will yield 3 test cases, one for each value of x. Slash also supports parametrizing the be fore and
after methods of test classes, thus multiplying each case by several possible setups:

class SomeTest (Test) :
@slash.parametrize('x', [1, 2, 31)
def before(self, x):
#

@slash.parametrize('y', [4, 5, 6])
def test (self, y):
#

@slash.parametrize('z"', [7, 8, 91)
def after(self, z):
#

The above will yield 27 different runnable tests, one for each cartesian product of the before, test and after
possible parameter values.

This also works across inheritence. Each base class can parametrize its before or after methods, multiplying the
number of variations actually run accordingly. Calls to super are handled automatically in this case:

class BaseTest (Test) :

@slash.parametrize ('base_parameter', [1, 2, 31])
def before(self, base_parameter) :

(continues on next page)

12 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

(continued from previous page)

class DerivedTest (BaseTest) :

@slash.parametrize ('derived_parameter', [4, 5, 6])
def before(self, derived_parameter):
super (DerivedTest, self) .before() # note that base parameters aren't,,
—specified here

3.3.2 More Parametrization Shortcuts

In addition to slash.parametrize (), Slash also supports slash.parameters.toggle as a shortcut for
toggling a boolean flag in two separate cases:

@slash.parameters.toggle ('with_safety_ switch')
def test_operation(with_safety_switch):

Another useful shortcut is slash.parameters. iterate, which is an alternative way to specify parametriza-
tions:

@slash.parameters.iterate(x=[1, 2, 31, y=I[4, 5, 6])
def test_something(x, vy):

3.3.3 Specifying Multiple Arguments at Once

You can specify dependent parameters in a way that forces them to receive related values, instead of a simple cartesian
product:

@slash.parametrize(('fruit', 'color'), [('apple', 'red'), ('apple', 'green'), ('banana
—', 'yellow')])
def test_fruits(fruit, color):

<—-— this never gets a yellow apple

3.3.4 Labeling Parameters

By default, parameters are being designated by their ordinal number, starting with zero. This means that the following
test:

@slash.parametrize ('param', [Objectl(), Object2()])
def test_something(param) :

This will generate tests named test_something (param=param0) and
test_something (param=paraml). This is not very useful for most cases — as the tests should be in-
dicative of their respective parametrization flavors.

To cope with this, Slash supports parametrization labels. This can be done as follows:

3.3. Test Parametrization 13

Slash Documentation, Release 1.14.0

@slash.parametrize ('param', [
slash.param('first', Objectl()),
slash.param('second', Object2()),

1)

def test_something(param) :

The above will generate tests named test_something (param=first) and
test_something (param=second), which, given descriptive labels, should differentiate the cases more
clearly.

The labeling mechanism has a second possible syntactic shortcut, for developers preferring the value to appear first:

@slash.parametrize ('param', [
Objectl() // slash.param('first'"),
Object2() // slash.param('second'),

1)

def test_something(param) :

The two forms are functionally equivalent.

Note: Label names are limited to 30 characters, and are under the same naming constraints as Python variables. This
is intentional, and is intended to avoid abuse and keep labels concise.

3.3.5 Excluding Parameter Values

You can easily skip specific values from parametrizations in tests through slash.exclude:

import slash
SUPPORTED_SIZES = [10, 15, 20, 25]
@slash.parametrize('size', SUPPORTED_SIZES)

@slash.exclude('size', [10, 201)
def test_size(size): # <—— will be skipped for sizes 10 and 20

This also works for parameters of fixtures (for more information about fixtures see the fixtures chapter)

import slash
SUPPORTED_SIZES = [10, 15, 20, 25]
@slash.exclude('car.size', [10, 207)

def test_car (car):

@slash.parametrize('size', SUPPORTED_SIZES)
@slash.fixture
def car(size): # <-— will be skipped for sizes 10 and 20

Exclusions also work on sets of parameters:

14 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

import slash
SUPPORTED_SIZES = [10, 15, 20, 25]
@slash.exclude(('car.size', 'car.color'), [(10, 'red'), (20, 'blue')l])

def test_car (car):

@slash.parametrize('size', SUPPORTED_SIZES)

@slash.parametrize('color', ['red', 'green', 'blue'l])

@slash.fixture

def car(size, color): # <-- red cars of size 10 and blue cars of size 20 will be_,
—skipped

3.4 Test Tags

3.4.1 Tagging Tests

Slash supports organizing tests by tagging them. This is done using the slash. tag () decorator:

@slash.tag('dangerous')
def test_something() :

You can also have tag decorators prepared in advance for simpler usage:

dangerous = slash.tag('dangerous')

@dangerous
def test_something() :

Tags can also have values:

@slash.tag('covers', 'requirement_1294")
def test_something():

3.4.2 Filtering Tests by Tags

When running tests you can select by tags using the —k flag. A simple case would be matching a tag substring (the
same way the test name is matched:

’$ slash run tests -k dangerous

This would work, but will also select tests whose names contain the word ‘dangerous’. Prefix the argument with tag:
to only match tags:

’$ slash run tests -k tag:dangerous

3.4. Test Tags 15

Slash Documentation, Release 1.14.0

Combined with the regular behavior of —k this yields a powrful filter:

’$ slash run tests -k 'microwave and power and not tag:dangerous'

Filtering by value is also supported:

’$ slash run test -k covers=requirement_1294

Or:

’$ slash run test -k tag:covers=requirement_1294

3.5 Test Fixtures

Slash includes a powerful mechanism for parametrizing and composing tests, called fixtures. This feature resembles,
and was greatly inspired by, the feature of the same name in py.test.

To demonstrate this feature we will use fest functions, but it also applies to test methods just the same.

3.5.1 What is a Fixture?

A fixture refers to a certain piece of setup or data that your test requires in order to run. It generally does not refer to
the test itself, but the base on which the test builds to carry out its work.

Slash represents fixtures in the form of arguments to your test function, thus denoting that your test function needs this
fixture in order to run:

def test_microwave_turns_on (microwave) :
microwave.turn_on ()
assert microwave.get_state() == STATE_ON

So far so good, but what exactly is microwave? Where does it come from?

The answer is that Slash is responsible of looking up needed fixtures for each test being run. Each function is examined,
and telling by its arguments, Slash goes ahead and looks for a fixture definition called microwave.

3.5.2 The Fixture Definition

The fixture definition is where the logic of your fixture goes. Let’s write the following somewhere in your file:

import slash

@slash.fixture

def microwave () :
initialization of the actual microwave instance
return Microwave (...)

In addition to the test file itself, you can also put your fixtures in a file called slashconf.py, and put it in your test
directory. Multiple such files can exist, and a test automatically “inherits” fixtures from the entire directory hierarchy
above it.

16 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

3.5.3 Fixture Cleanups

You can control what happens when the lifetime of your fixture ends. By default, this happens at the end of each test
that requested your fixture. To do this, add an argument for your fixture called this, and call its add_cleanup
method with your cleanup callback:

@slash. fixture

def microwave (this) :
returned = Microwave ()
this.add_cleanup (returned.turn_off)
return returned

Note: Ths this variable is also available globally while computing each fixture as the slash.context.
fixture global variable.

3.5.4 Opting Out of Fixtures

In some cases you may want to turn off Slash’s automatic deduction of parameters as fixtures. For instance in the
following case you want to explicitly call a version of a base class’s be fore method:

>>> class BaseTest (slash.Test):
def before(self, param):
self._construct_case_with (param)

>>> class DerivedTest (BaseTest) :

@slash.parametrize('x', [1, 2, 31)
def before(self, x):
param_value = self._compute_param(x)

super (DerivedTest, self) .before(x)

This case would fail to load, since Slash will assume param is a fixture name and will not find such a fixture to use.
The solution is to use slash.nofixtures () on the parent class’s be fore method to mark that param is not a
fixture name:

>>> class BaseTest (slash.Test):
@slash.nofixtures
def before(self, param):
self._construct_case_with (param)

3.5.5 Fixture Needing Other Fixtures

A fixture can depend on other fixtures just like a test depends on the fixture itself, for instance, here is a fixture for a
heating plate, which depends on the type of microwave we’re testing:

@slash. fixture
def heating plate (microwave) :
return get_appropriate_heating_plate_for (microwave)

Slash takes care of spanning the fixture dependency graph and filling in the values in the proper order. If a certain
fixture is needed in multiple places in a single test execution, it is guaranteed to return the same value:

3.5. Test Fixtures 17

Slash Documentation, Release 1.14.0

def test_heating_plate_usage (microwave, heating_plate):
we can be sure that heating_plate matches the microwave,
since "microwave' will return the same value for the test
and for the fixture

3.5.6 Fixture Parametrization

Fixtures become interesting when you parametrize them. This enables composing many variants of tests with a very
little amount of effort. Let’s say we have many kinds of microwaves, we can easily parametrize the microwave class:

@slash.fixture
@slash.parametrize ('microwave_class', [SimpleMicrowave, AdvancedMicrowave]) :
def microwave (microwave_class, this):

returned = microwave_class ()

this.add_cleanup (returned.turn_off)

return returned

Now that we have a parametrized fixture, Slash takes care of multiplying the test cases that rely on it automatically.
The single test we wrote in the beginning will now cause two actual test cases to be loaded and run — one with a simple
microwave and one with an advanced microwave.

As you add more parametrizations into dependent fixtures in the dependency graph, the actual number of cases being
run eventually multiples in a cartesian manner.

3.5.7 Fixture Requirements

It is possible to specify requirements for fixture functions, very much like test requirements. Fixtures for which
requirements are not met will prevent their dependent tests from being run, being skipped instead:

@slash.fixture
@slash.requires (condition, 'Requires a specific flag')
def some_fixture () :

See also:

Requirements

3.5.8 Fixture Scopes

By default, a fixture “lives” through only a single test at a time. This means that:

1. The fixture function will be called again for each new test needing the fixture

2. If any cleanups exist, they will be called at the end of each test needing the fixture.
We say that fixtures, by default, have a scope of a single test, or test scope.

Slash also supports session and module scoped fixtures. Session fixtures live from the moment of their activation
until the end of the test session, while module fixtures live until the last test of the module that needed them finished
execution. Specifying the scope is rather straightforward:

18 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

@slash.fixture (scope='session')
def some_session_fixture(this):
@this.add_cleanup
def cleanup():
print ('Hurray! the session has ended')

@slash.fixture (scope="module")
def some_module_fixture(this):
@this.add_cleanup
def cleanup():
print ('Hurray! We are finished with this module')

Test Start/End for Widely Scoped Fixtures

When a fixture is scoped wider than a single test, it is useful to add custom callbacks to the fixtures to be called when
a test starts or ends. This is done viathe this.test_start and this.test_end callbacks, which are specific
to the current fixture.

@slash.fixture (scope="module")
def background_process (this):
process = SomeComplexBackgroundProcess ()

@this.test_start

def on_test_start():
process.make_sure_still_running()

@this.test_end

def on_test_end():
process.make_sure_no_errors ()

process.start ()

this.add_cleanup (process.stop)

Note: Exceptions propagating out of the test_start or test_end hooks will fail the test, possibly preventing it
from starting properly

3.5.9 Autouse Fixtures

You can also “force” a fixture to be used, even if it is not required by any function argument. For instance, this example
creates a temporary directory that is deleted at the end of the session:

@slash.fixture (autouse=True, scope='session')
def temp_dir():
"""Create a temporary directory"""
directory = '/some/directory'
os.makedirs (directory)

@this.add_cleanup
def cleanup() :
shutil.rmtree (directory)

3.5. Test Fixtures 19

Slash Documentation, Release 1.14.0

3.5.10 The use_fixtures Decorator

In some cases, you may want to use a certain fixture but don’t need its return value. In such cases, rather than using
the fixture as an unused argument to your test function you can use the use_fixtures decorator. This decorator
receives a list of fixture names and indicates that the decorated test needs them to run:

@slash.fixture ()
def used_fixturel():

""r"do something
pass

@slash.fixture ()

def used_fixture2():
"""do another thing"""
pass

@slash.use_fixtures (["used_fixturel, used_fixture2"])
def test_something():
pass

3.5.11 Aliasing Fixtures

In some cases you may want to name your fixtures descriptively, e.g.:

@slash.fixture

def microwave_with_up_to_date_firmware (microwave) :
microwave.update_firmware ()
return microwave

Although this is a very nice practice, it makes tests clumsy and verbose:

def test_turning_off (microwave_with_up_to_date_firmware) :
microwave_with_up_to_date_firmware.turn_off ()
assert microwave_with_up_to_date_firmware.is_off ()
microwave_with_up_to_date_firmware.turn_on ()

Fortunately, Slash allows you to alias fixtures, using the sIash. use () shortcut:

def test_turning_off (m: slash.use('microwave_with_up_to_date_firmware')):
m.turn_off ()
assert m.is_off ()
m.turn_on ()

Note: Fixture aliases rely on function argument annotation

3.5.12 Misc. Utilities
Yielding Fixtures
Fixtures defined as generators are automatically detected by Slash. In this mode, the fixture is run as a generator,

with the yielded value acting as the fixture value. Code after the yield is treated as cleanup code (similar to using
this.add_cleanup):

20 Chapter 3. Table Of Contents

https://www.python.org/dev/peps/pep-3107/

Slash Documentation, Release 1.14.0

@slash.fixture

def microwave (model_name) :
m = Microwave (model_name)
yield m
m.turn_off ()

Generator Fixtures

slash.generator fixture () is a shortcut for a fixture returning a single parametrization:

@slash.generator_fixture
def model_types():
for model_config in all_model_configs:
if model_config.supported:
yield model_config.type

In general, this form:

@slash.generator_fixture
def fixture():
yield from x

is equivalent to this form:

@slash.fixture
@slash.parametrize ('param', Xx)
def fixture (param):

return param

3.5.13 Listing Available Fixtures

Slash can be invoked with the 1ist command and the ——only-fixtures flag, which takes a path to a testing
directory. This command gets the available fixtures for the specified testing directory:

$ slash list —only-fixtures path/to/tests
temp_dir Create a temporary directory

Source: path/to/tests/utilities.py:8

3.6 Assertions, Exceptions and Errors

3.6.1 Assertions

Assertions are the bread and butter of tests. They ensure constraints are held and that conditions are met:

test_addition.py

def test_addition(self):
assert 2 + 2 ==

When assertions fail, the assertion rewriting code Slash uses will help you understand what exactly happened. This
also applies for much more complex expressions:

3.6. Assertions, Exceptions and Errors 21

Slash Documentation, Release 1.14.0

assert f(g(x)) == g(f(x + 1))

When the above assertion fails, for instance, you can expect an elaborate output like the following:

> assert f(g(x)) == (f(x + 1))
F AssertionError: assert 1 == 2
+ where 1 = <function f at 0x10b10£f848> (1)
+ where 1 = <function g at 0x10b10£8c0> (1)
+ and 2 = <function g at 0x10b1l0£f8c0>(2)
+ where 2 = <function f at O0x10b10£f848>((1 + 1))

Note: The assertion rewriting code is provided by dessert, which is a direct port of the code that powers pytest. All
credit goes to Holger Krekel and his fellow devs for this masterpiece.

Note: By default, even asserts with accompanied messages will emit introspection information. This can be overriden
through the run.message_assertion_introspection configuration flag.

New in version 1.3.0.

More Assertion Utilities

One case that is not easily covered by the assert statement is asserting Exception raises. This is easily done with
slash.assert_raises():

with slash.assert_raises (SomeException) as caught:
some_ func ()

assert caught.exception.param == 'some_value'

slash.assert_raises () will raise ExpectedExceptionNotCaught exception in case the expected ex-
ception was not raised:

>>> with slash.assert_raises (Exception) as caught:
pass
Traceback (most recent call last):

ExpectedExceptionNotCaught:

In a case where the test author wants to allow a specific exception but not to enforce its propagation (e.g. allowing a
timing issue to be present), slash.allowing exceptions () can be used.

>>> with slash.allowing_exceptions (Exception) as caught:
pass

You also have slash.assert_almost_equal () to test for near equality:

slash.assert_almost_equal (1.001, 1, max_delta=0.1)

Note: slash.assert_raises() and slash.allowing exceptions() interacts with

22 Chapter 3. Table Of Contents

https://github.com/vmalloc/dessert
http://pytest.org

Slash Documentation, Release 1.14.0

handling _exceptions () - exceptions anticipated by assert_raises or allowing_exceptions
will be ignored by handling_exceptions.

3.6.2 Errors

Any exception which is not an assertion is considered an ‘error’, or in other words, an unexpected error, failing the
test. Like many other testing frameworks Slash distinguishes failures from errors, the first being anticipated while the
latter being unpredictable. For most cases this distinction is not really important, but exists nontheless.

Any exceptions thrown from a test will be added to the test result as an error, thus marking the test as ‘error’.

3.6.3 Interruptions

Usually when a user hits Ctrl+C this means he wants to terminate the running program as quickly as possible without
corruption or undefined state. Slash treats KeyboardInterrupt a bit differently than other exceptions, and tries to quit
as quickly as possible when they are encountered.

Note: KeyboardInterrupt also causes regular cleanups to be skipped. You can set critical cleanups to be carried
out on both cases, as described in the relevant section.

3.6.4 Explicitly Adding Errors and Failures

Sometimes you would like to report errors and failures in mid-test without failing it immediately (letting it run to the
end). This is good when you want to collect all possible failures before officially quitting, and this is more helpful for
reporting.

This is possible using the sIash.add _error () and slash.add_ failure () methods. They can accept strings
(messages) or actual objects to be kept for reporting. It is also possible to add more than one failure or error for each
test.

class MyTest (slash.Test):
def test (self):
if not some_condition () :

slash.add_error ("Some condition is not met!")

code keeps running here...

slash.add_error (msg=None, frame_correction=0, exc_info=None)
Adds an error to the current test result

Parameters
* msg — can be either an object or a string representing a message

* frame_correction — when delegating add_error from another function, specifies the
amount of frames to skip to reach the actual cause of the added error

* exc_info — (optional) - the exc_info tuple of the exception being recorded

slash.add_failure (msg=None, frame_correction=0, exc_info=None)
Adds a failure to the current test result

Parameters

3.6. Assertions, Exceptions and Errors 23

Slash Documentation, Release 1.14.0

* msg — can be either an object or a string representing a message

* frame_correction — when delegating add_failure from another function, specifies the
amount of frames to skip to reach the actual cause of the added failure

3.6.5 Handling and Debugging Exceptions

Exceptions are an important part of the testing workflow. They happen all the time — whether they indicate a test
lifetime event or an actual error condition. Exceptions need to be debugged, handled, responded to, and sometimes
with delicate logic of what to do when.

You can enter a debugger when exceptions occur via the ——pdb flag. Slash will attempt to invoke pudb or ipdb if
you have them installed, but will revert to the default pdb if they are not present.

Note that the hooks named exception_caught_after_debugger, and
exception_caught_before_debugger handle exception cases. It is important to plan your hook call-
backs and decide which of these two hooks should call them, since a debugger might stall for a long time until a user
notices it.

Exception Handling Context

Exceptions can occur in many places, both in tests and in surrounding infrastructure. In many cases you want to give
Slash the first oppurtunity to handle an exception before it propagates. For instance, assume you have the following
code:

def test_function():
funcl ()

def funcl{():
with some_cleanup_context () :
func?2 ()

def func2():
do_something_that_can_fail ()

In the above code, if do_something_that_can_fail raises an exception, and assuming you’re running slash
with ——pdb, you will indeed be thrown into a debugger. However, the end consequence will not be what you expect,
since some_cleanup_context will have already been left, meaning any cleanups it performs on exit take place
before the debugger is entered. This is because the exception handling code Slash uses kicks in only after the exception
propagates out of the test function.

In order to give Slash a chance to handle the exception closer to where it originates, Slash provices a special con-
text, slash.exception handling.handling exceptions (). The purpose of this context is to give your
infrastructure a chance to handle an erroneous case as close as possible to its occurrence:

def funcl{():
with some_cleanup_context (), slash.handle_exceptions_context ():
func?2 ()

the handling exceptions contextcan be safely nested — once an exception is handled, it is appropriately marked,
so the outer contexts will skip handling it:

from slash.exception_handling import handling_exceptions

def some_function () :

(continues on next page)

24 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

(continued from previous page)

with handling_exceptions () :
do_something_that_might_fail ()

with handling_exceptions() :
some_function ()

Note: handling_exceptions will ignore exceptions currently anticipated by assert_raises (). This is
desired since these exceptions are an expected flow and not an actual error that needs to be handled. These exceptions
will be simply propagated upward without any handling or marking of any kind.

Exception Marks

The exception handling context relies on a convenience mechanism for marking exceptions.

Marks with Special Meanings

* mark_exception_fatal (): See below.
e noswallow/(): See below.

e inhibit_unhandled_exception_ traceback (): See below.

Fatal Exceptions

Slash supports marking special exceptions as fatal, causing the immediate stop of the session in which they occur.
This is useful if your project has certain types of failures which are considered important enough to halt everything for
investigation.

Fatal exceptions can be added in two ways. Either via marking explicitly with mark_exception_fatal ():

raise slash.exception_handling.mark_exception_fatal (Exception ('something'))

Or, when adding errors explicitly, via the mark_fatal method:

slash.add_error ("some error condition detected!"™) .mark_fatal ()

Note: The second form, using add_error will not stop immediately since it does not raise an exception. It is your
reponsibility to avoid any further actions which might tamper with your setup or your session state.

Exception Swallowing

Slash provides a convenience context for swallowing exceptions in various places,
get_exception_swallowing context (). This is useful in case you want to write infrastructure code
that should not collapse your session execution if it fails. Use cases for this feature:

1. Reporting results to external services, which might be unavailable at times

2. Automatic issue reporting to bug trackers

3.6. Assertions, Exceptions and Errors 25

Slash Documentation, Release 1.14.0

3. Experimental features that you want to test, but don’t want to disrupt the general execution of your test suites.

Swallowed exceptions get reported to log as debug logs, and assuming the sentry.dsn configuration path is set, also get
reported to sentry:

def attempt_to_upload_logs():
with slash.get_exception_swallowing_context () :

You can force certain exceptions through by using the noswallow () or disable_exception_swallowing
functions:

from slash.exception handling import (
noswallow,
disable_exception_swallowing,

)

def funcl():
raise noswallow (Exception ("CRITICAL!"))

def func2():
e = Exception ("CRITICAL!'")
disable_exception_swallowing (e)
raise e

@disable_exception_swallowing
def func3():
raise Exception ("CRITICAL!™)

Console Traceback of Unhandled Exceptions

Exceptions thrown from hooks and plugins outside of running tests normally cause emitting full traceback to the
console. In some cases, you would like to use these errors to denote usage errors or specific known erroneous condi-
tions (e.g. missing configuration or conflicting usages). In these cases you can mark your exceptions to inhibit a full
traceback:

from slash.exception_handling import inhibit_unhandled_exception_traceback

raise inhibit_unhandled_exception_traceback (Exception('Some Error'))

New in version 1.3.0.

3.7 Warnings

In many cases test executions succeed, but warnings are emitted. These warnings can mean a lot of things, and in
some cases even invalidate the success of the test completely.

3.7.1 Warning Capture

Slash collects warnings emitted throughout the session in the form of either warning logs or the native warnings mech-
anism. The warnings are recorded in the session.warnings (instance of warnings.SessionWarnings)
component, and cause the warning_added hook to be fired.

26 Chapter 3. Table Of Contents

http://getsentry.com

Slash Documentation, Release 1.14.0

3.7.2 Filtering Warnings

By default all native warnings are captured. In cases where you want to silence specific warnings, you can use the
slash.ignore_warnings () function to handle them.

For example, you may want to include code in your project’s . slashrc as follows:

@slash.hooks.configure.register
def configure_warnings() :
slash.ignore_warnings (category=DeprecationWarning, filename='/some/bad/file.py")

Note: Filter arguments to ignore_warnings are treated as though they are and ed together. This means that a filter
for a specific filename and a specific category would only ignore warnings coming from the specified file and having
the specified category.

For ignoring warnings in specific code-block, one can use the slash.ignored_warnings context: .. code-block:: python

with slash.ignore_warnings(category=DeprecationWarning, filename="/some/bad/file.py’): ...

3.8 Customizing and Extending Slash

This section describes how to tailor Slash to your needs. We’ll walk through the process in baby steps, each time
adding a small piece of functionality. If you want to start by looking at the finished example, you can skip and see it
here.

3.8.1 Customization Basics

.slashrc

In order to customize Slash we have to write code that will be executed when Slash loads. Slash offers an easy way to
do this — by placing a file named . slashrc in your project’s root directory. This file is loaded as a regular Python
file, so we will write regular Python code in it.

Note: The .slashrc file location is read from the configuration (run.project_customization_file_path). However
since it is ready before the command-line parsing phase, it cannot be specified using —o.

Hooks and Plugins

When our . slashrc file is loaded we have only one shot to install and configure all the customizations we need for
the entire session. Slash supports two facilities that can be used together for this task, as we’ll see shortly.

Hooks are a collection of callbacks that any code can register, thus getting notified when certain events take place.
They also support receiving arguments, often detailing what exactly happened.

Plugins are a mechanism for loading pieces of code conditionally, and are described in detail in the relevant section.
For now it is sufficient to say that plugins are classes deriving from slash.plugins.PluginInterface, and
that can activated upon request. Once activated, methods defined on the plugin which correspond to names of known
hooks get registered on those hooks automatically.

3.8. Customizing and Extending Slash 27

Slash Documentation, Release 1.14.0

3.8.2 1. Customizing Using Plain Hooks

Our first step is customizing the logging facility to our needs. We are going to implement two requirements:
1. Have logging always turned on in a fixed location (Say ~/slash_logs)
2. Collect execution logs at the end of each session, and copy them to a central location (Say /remote/path).

The first requirement is simple - it is done by modifying the global Slash configuration:

file: .slashrc
import os
import slash

slash.config.root.log.root = os.path.expanduser('~/slash_logs")

Note: Don’t be confused about slash.config.root.log.root above. slash.config.root is used to
access the root of the configuration, while 1og. root is the name of the configuration value that controls the log
location.

See also:
Configuration

The second requirement requires us to do something when the session ends. This is where hooks come in. It allows
us to register a callback function to be called when the session ends.

Slash uses gossip to implement hooks, so we can simply use gossip.register to register our callback:

import gossip
import shutil

@Qgossip.register('slash.session_end')
def collect_logs():
shutil.copytree(...)

Now we need to supply arguments to copytree. We want to copy only the directory of the current session, into a
destination directory also specific to this session. How do we do this? The important information can be extracted
from slash. session, which is a proxy to the current object representing the session:

Qgossip.register('slash.session_end')
def collect_logs():
shutil.copytree (
slash.session.logging.session_log_path,
os.path.join('/remote/path', slash.session.id))

See also:

Hooks, Slash Internals

3.8.3 2. Organizing Customizations in Plugins

Suppose you want to make the log collection behavior optional. Our previous implementation registered the callback
immediately, meaning you had no control over whether or not it takes place. Optional customizations are best made
optional through organizing them in plugins.

28 Chapter 3. Table Of Contents

http://gossip.readthedocs.org

Slash Documentation, Release 1.14.0

Information on plugins in Slash can be found in Plugins, but for now it is enough to mention that plugins are classes
deriving from slash.plugins.PluginInterface. Plugins can be installed and activated. Installing a plugin
makes it available for activation (but does little else), while activating it actually makes it kick into action. Let’s write
a plugin that performs the log collection for us:

class LogCollectionPlugin(slash.plugins.PluginInterface):

def get_name (self):
return 'logcollector'

def session_end(self):
shutil.copytree (
slash.session.logging.session_log_path,
os.path.Jjoin('/remote/path', slash.session.id))

collector_plugin = LogCollectionPlugin ()
plugins.manager.install (collector_plugin)

The above class inherits from slash.plugins.PluginInterface - this is the base class for implementing plu-
gins. We then call slash.plugins.plugin_manager.PluginManager.install () to install our plugin.
Note that at this point the plugin is not activated.

Once the plugin is installed, you can pass ——with—-logcollector to actually activate the plugin. More on that
soon.

The get_name method is required for any plugin you implement for slash, and it should return the name of the
plugin. This is where the logcollector in ——with-logcollector comes from.

The second method, session_end, is the heart of how the plugin works. When a plugin is activated, methods
defined on it automatically get registered to the respective hooks with the same name. This means that upon activation
of the plugin, our collection code will be called when the session ends..

Activating by Default

In some cases you want to activate the plugin by default, which is easily done with the slash.plugins.
plugin_manager.PluginManager.activate():

slash.plugins.manager.activate (collector_plugin)

Note: You can also just pass activate=True inthecallto install

Once the plugin is enabled by default, you can correspondingly disable it using ——without—-logcollector asa
parameter to slash run.

See also:

Plugins

3.8.4 3. Passing Command-Line Arguments to Plugins

In the real world, you want to test integrated products. These are often physical devices or services running on external
machines, sometimes even officially called devices under test. We would like to pass the target device IP address as a
parameter to our test environment. The easiest way to do this is by writing a plugin that adds command-line options:

3.8. Customizing and Extending Slash 29

Slash Documentation, Release 1.14.0

@slash.plugins.active
class ProductTestingPlugin (slash.plugins.PluginInterface):

def get_name (self):
return 'your product'

def configure_argument_parser (self, parser):
parser.add_argument ('-t', '—--target',
help='ip address of the target to test')

def configure_from_parsed_args(self, args):
self.target_address = args.target

def session_start (self):
slash.g.target = Target (self.target_address)

First, we use slash.plugins.active () decorator here as a shorthand. See Plugins for more information.

Second, we use two new plugin methods here - configure_argument_parser and configure_from_parsed_args. These
are called on every activated plugin to give it a chance to control how the commandline is processed. The parser and
args passed are the same as if you were using argparse directly.

Note that we separate the stages of obtaining the address from actually initializing the target object. This is to postpone
the heavier code to the actual beginning of the testing session. The session_start hook helps us with that - it is
called after the argument parsing part.

Another thing to note here is the use of slash.g. This is a convenient location for shared global state in your
environment, and is documented in Global State. In short we can conclude with the fact that this object will be
available to all test under slash.g.target, as a global setup.

3.8.5 4. Configuration Extensions

Slash supports a hierarchical configuration facility, described in the relevant documentation section. In some cases you
might want to parametrize your extensions to allow the user to control its behavior. For instance let’s add an option to
specify a timeout for the target’s API:

@slash.plugins.active
class ProductTestingPlugin (slash.plugins.PluginInterface):

def get_name (self):
return 'your product'

def get_default_config(self):
return {'api_timeout_seconds': 50}

def session_start (self):
slash.g.target = Target (
self.target_address,
timeout=slash.config.root.plugin_config.your_product.api_timeout_seconds)

We use the slash.plugins.PluginIinterface.activate () method to control what happens when our
plugin is activated. Note that this happens very early in the execution phase - even before tests are loaded to be
executed.

30 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

In the act ivate method we use the extend capability of Slash’s configuration to append configuration paths to it.
Then in session_start we use the value off the configuration to initialize our target.

The user can now easily modify these values from the command-line using the —o flag to slash run:

$ slash run ... -o product.api_timeout_seconds=100 ./

3.8.6 Complete Example

Below is the final code for the . s1lashrc file for our project:

import os
import shutil

import slash

slash.config.root.log.root = os.path.expanduser('~/slash_logs')

@slash.plugins.active
class LogCollectionPlugin(slash.plugins.PluginInterface):

def get_name (self):
return 'logcollector'

def session_end(self):
shutil.copytree (
slash.session.logging.session_log_path,
os.path.join('/remote/path', slash.session.id))

@slash.plugins.active
class ProductTestingPlugin (slash.plugins.PluginInterface):

def get_name (self):
return 'your product'

def get_default_config(self):
return {'api_timeout_seconds': 50}

def configure_argument_parser (self, parser):
parser.add_argument ('-t', '—-—target',
help='ip address of the target to test')

def configure_from_parsed_args(self, args):
self.target_address = args.target

def session_start (self):
slash.g.target = Target (
self.target_address, timeout=slash.config.root.plugin_config.your_product.
—api_timeout_seconds)

3.8. Customizing and Extending Slash 31

Slash Documentation, Release 1.14.0

3.9 Configuration

Slash uses a hierarchical configuration structure provided by Confetti. The configuration values are addressed by their
full path (e.g. debug.enabled, meaning the value called ‘enabled’ under the branch ‘debug’).

Note: You can inspect the current paths, defaults and docs for Slash’s configuration via the slash list-config
command from your shell

Several ways exist to modify configuration values.

3.9.1 Overriding Configuration Values via Command-Line

When running tests via slash run, you can use the —o flag to override configuration values:

$ slash run -o hooks.swallow_exceptions=yes ...

Note: Configuration values get automatically converted to their respective types. More specifically, boolean values
also recognize yes and no as valid values.

3.9.2 Customization Files

There are several locations in which you can store files that are to be automatically executed by Slash when it runs.
These files can contain code that overrides configuration values:

slashre file Ifthe file ~/ . slash/slashrc (See run.user_customization_file_path) exists, it is loaded and executed
as a regular Python file by Slash on startup.

SLASH_USER_SETTINGS If an environment variable named SLASH_USER_SETTINGS exists, the file path it
points to will be loaded instead of the slashrc file.

SLASH_SETTINGS If an environment variable named SLASH_SETTINGS exists, it is assumed to point at a file
path or URL to load as a regular Python file on startup.

Each of these files can contain code which, among other things, can modify Slash’s configuration. The configuration
object is located in slash.config, and modified through slash.config. root as follows:

~/.slash/slashrc contents
import slash

slash.config.root.debug.enabled = False

List of Available Configuration Values

debug.debug_skips

Default: False Enter pdb also for SkipTest exceptions

32 Chapter 3. Table Of Contents

https://github.com/vmalloc/confetti

Slash Documentation, Release 1.14.0

debug.debug_hook_handlers

Default: False Enter pdb also for every exception encountered in a hook/callback. Only relevant when debugging is
enabled

debug.enabled

Default: False Enter pdb on failures and errors

debug.filter_strings

Default: [] A string filter, selecting if to enter pdb

debug.debugger

Default: None

log.colorize

Default: False Emit log colors to files

log.console_theme.dark_background

Default: True

log.console_theme.inline-file-end-fail

Default: red

log.console_theme.inline-file-end-skip

Default: yellow

log.console_theme.inline-file-end-success

Default: green

log.console_theme.inline-error

Default: red

log.console_theme.inline-test-interrupted

Default: yellow

3.9. Configuration 33

Slash Documentation, Release 1.14.0

log.console_theme.error-cause-marker

Default: white/bold

log.console_theme.fancy-message

Default: yellow/bold

log.console_theme.frame-local-varname

Default: yellow/bold

log.console_theme.num-collected

Default: white/bold

log.console_theme.session-summary-success

Default: green/bold

log.console_theme.session-summary-failure

Default: red/bold

log.console_theme.session-start

Default: white/bold

log.console_theme.error-separator-dash

Default: red

log.console_theme.tb-error-message

Default: red/bold

log.console_theme.tb-error

Default: red/bold

log.console_theme.tb-frame-location

Default: white/bold

34 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

log.console_theme.test-additional-details-header

Default: black/bold

log.console_theme.test-additional-details

Default: black/bold

log.console_theme.test-error-header

Default: white

log.console_theme.test-skip-message

Default: yellow

log.console_theme.tb-line-cause

Default: white

log.console_theme.tb-test-line

Default: red/bold

log.console_theme.tb-line

Default: black/bold

log.console_level

Default: 13

log.core_log_level

Default: 13 Minimal level of slash log messages to show

log.color_console

Default: None

log.repr_blacklisted_types

Default: [] Blacklisted types that should not be repred in traceback

3.9. Configuration

35

Slash Documentation, Release 1.14.0

log.traceback_variables

Default: False Logs values of variables in traceback frames for added errors

log.console_traceback_level

Default: 2 Detail level of tracebacks

log.truncate_console_lines

Default: True truncate long log lines on the console

log.truncate_console_errors

Default: False If truncate_console_lines is set, also truncate long log lines, including and above the “error” level, on
the console

log.root

Default: None Root directory for logs

log.subpath

Default: {context.session.id}/{context.test_id}/debug.log Path to write logs to under the root

log.session_subpath

Default: {context.session.id}/session.log

log.highlights_subpath

Default: None If set, this path will be used to record highlights (eg. errors added) in the session and/or tests

log.last_session_symlink

Default: None If set, specifies a symlink path to the last session log file in each run

log.last_session_dir_symlink

Default: None If set, specifies a symlink path to the last session log directory

log.last_test_symlink

Default: None If set, specifies a symlink path to the last test log file in each run

36 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

log.last_failed_symlink

Default: None If set, specifies a symlink path to the last failed test log file

log.show_manual_errors_tb

Default: True Show tracebacks for errors added via slash.add_error

log.show_raw_param_values

Default: False Makes test start logs contain the raw values of test parameters

log.silence_loggers

Default: [] Logger names to silence

log.format

Default: None Format of the log line, as passed on to logbook. None will use the default format

log.console_format

Default: None Optional format to be used for console output. Defaults to the regular format

log.localtime

Default: False Use local time for logging. If False, will use UTC

log.unittest_mode

Default: False Used during unit testing. Emit all logs to stderr as well as the log files

log.unified_session_log

Default: False Make the session log file contain all logs, including from tests

log.compression.enabled

Default: False Compress log files

log.compression.algorithm

Default: brotli Compression algorithm to use, either gzip or brotli

3.9. Configuration

37

Slash Documentation, Release 1.14.0

log.compression.use_rotating_raw_file

Default: False When compression is enabled, write also to uncompressed rotating log file

log.cleanup.enabled

Default: False

log.cleanup.keep_failed

Default: True

run.dump_variation

Default: False Output the full variation structure before each test is run (mainly used for internal debugging)

run.default_sources

Default: [] Default tests to run assuming no other sources are given to the runner

run.suite_files

Default: [] File(s) to be read for lists of tests to be run

run.stop_on_error

Default: False Stop execution when a test doesn’t succeed

run.filter_strings

Default: [] A string filter, selecting specific tests by string matching against their name

run.repeat_each

Default: 1 Repeat each test a specified amount of times

run.repeat_all

Default: 1 Repeat all suite a specified amount of times

run.session_state_path

Default: ~/.slash/last_session Where to keep last session serialized data

38 Chapter 3

. Table Of Contents

Slash Documentation, Release 1.14.0

run.project_name

Default: None

run.project_customization_file_path

Default: ./.slashrc

run.user_customization_file_path

Default: ~/.slash/slashrc

run.resume_state_path

Default: ~/.slash/session_states Path to store or load session’s resume data

run.message_assertion_introspection

Default: True When False, failing assertions which have messages attached will not emit introspection info

run.capture.error_logs_as_errors

Default: False Add errors for error level logs

interactive.expose_g_globals

Default: True When False, slash.g won’t be added to interactive test namespaces

interactive.colors

Default: None IPython color scheme

parallel.num_workers

Default: 0 Parallel execution

parallel.worker_id

Default: None Worker_id

parallel.server_addr

Default: localhost Server address

3.9. Configuration

39

Slash Documentation, Release 1.14.0

parallel.server_port

Default: 0 Server port

parallel.keepalive_port

Default: 0 Keepalive port

parallel.parent_session_id

Default: None parent session id

parallel.communication_timeout_secs

Default: 60 timeout of worker in seconds

parallel.worker_connect_timeout

Default: 10 timeout for each worker to connect

parallel.no_request_timeout

Default: 20 timeout for server not getting requests

parallel.worker_error_file

Default: errors-worker worker error filename template

parallel.workers_error_dir

Default: None workers error directory

resume.failed_first

Default: False Run failed tests of previous session before all others

resume.unstarted_first

Default: False Run unstarted tests of previous session before all others

resume.failed_only

Default: False Run only failed tests of previous session

40 Chapter 3

. Table Of Contents

Slash Documentation, Release 1.14.0

resume.unstarted_only

Default: False Run only unstarted tests of previous session

resume.state_retention_days

Default: 10 Number of days to keep session entries for resuming session

tmux.enabled

Default: False Run inside tmux

tmux.use_panes

Default: False In parallel mode, run children inside panes and not windows

sentry.dsn

Default: None Possible DSN for a sentry service to log swallowed exceptions. See http://getsentry.com for details

plugins.search_paths

Default: [] List of paths in which to search for plugin modules

plugin_config.ci_links.build_url_environment_variable

Default: BUILD_URL

plugin_config.ci_links.link_template

Default: % (build_url)s/artifact/% (log_path)s

plugin_config.coverage.config_filename

Default: False Coverage configuration file

plugin_config.coverage.report_type

Default: html Coverage report format

plugin_config.coverage.report

Default: True

3.9. Configuration 41

Slash Documentation, Release 1.14.0

plugin_config.coverage.append

Default: False Append coverage data to existing file

plugin_config.coverage.sources

Default: [] Modules or packages for which to track coverage

plugin_config.notifications.prowl_api_key

Default: None

plugin_config.notifications.nma_api_key

Default: None

plugin_config.notifications.pushbullet_api_key

Default: None

plugin_config.notifications.notification_threshold

Default: 5

plugin_config.notifications.notify_only_on_failures

Default: False

plugin_config.notifications.notify_on_pdb

Default: True

plugin_config.notifications.prowl.api_key

Default: None

plugin_config.notifications.prowl.enabled

Default: True

plugin_config.notifications.nma.api_key

Default: None

42

Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

plugin_config.notifications.nma.enabled

Default: True

plugin_config.notifications.pushbullet.api_key

Default: None

plugin_config.notifications.pushbullet.enabled

Default: True

plugin_config.notifications.email.from_email

Default: Slash <noreply @getslash.github.io>

plugin_config.notifications.email.smtp_server

Default: None

plugin_config.notifications.email.to_list

Default: []

plugin_config.notifications.email.cc_list

Default: []

plugin_config.notifications.email.enabled

Default: False

plugin_config.notifications.slack.url

Default: None

plugin_config.notifications.slack.channel

Default: None

plugin_config.notifications.slack.from_user

Default: slash-bot

3.9. Configuration

43

Slash Documentation, Release 1.14.0

plugin_config.notifications.slack.enabled

Default: False

plugin_config.xunit.filename

Default: testsuite.xml Name of XML xUnit file to create

3.10 Logging

As mentioned in the introductory section, logging in Slash is done by Logbook. The path to which logs are written
is controlled with the —1 flag and console verbosity is controlled with —v/—qg. Below are some more advanced topics
which may be relevant for extending Slash’s behavior.

3.10.1 Controlling Console Colors

Console logs are colorized according to their level by default. This is done using Logbook’s colorizing handler. In
some cases you might want logs from specific sources to get colored differently. This is done using slash.log.
set_log_color():

>>> import slash.log
>>> import logbook
>>> slash.log.set_log_color('my_logger_name', logbook.NOTICE, 'red')

Note: Available colors are taken from logbook. Options are “black”, “darkred”, “darkgreen”, “brown”, “darkblue”,

LLIY3 9% ¢ CLINNY3 EEINT3 99 <. 9% <

“purple”, “teal”, “lightgray”, “darkgray”, “red”, “green”, “yellow”, “blue”, “fuchsia”, “turquoise”, “white”

Note: You can also colorize log fiels by setting the log.colorize configuration variable to True

3.10.2 Controlling the Log Subdir Template
The filenames created under the root are controlled with the log.subpath config variable, which can be also a for-

mat string receiving the context variable from slash (e.g. sessions/{context.session.id}/{context.
test.id}/logfile.loqg).

Test Ordinals

Youcanuse slash.core.metadata.Metadata.test_index0 toinclude an ordinal prefix in log directories,
for example setting log.subpath to:

{context.session.id}/{context.test.__slash__ .test_index0:03}-{context.test.id}.log

44 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

Timestamps

The current timestamp can also be used when formatting log paths. This is useful if you want to create log directories
named according to the current date/time:

logs/{timestamp:%Ysm$d-$HEMSS} . log

The Session Log
Another important config path is log.session_subpath. In this subpath, a special log file will be kept logging all records
that get emitted when there’s no active test found. This can happen between tests or on session start/end.

The session log, by default, does not contain logs from tests, as they are redirected to test log files. However, setting
the log.unified_session_log to True will cause the session log to contain all logs from all tests.

The Highlights Log

Slash allows you to configure a separate log file to receive “highlight” logs from your sessions. This isn’t necessarily
related to the log level, as any log emitted can be marked as a “highlight”. This is particularly useful if you have
infrequent operations that you’d like to track and skim occasionally.

To configure a log location for your highlight logs, set the log.highlights_subpath configuration path. To emit a
highlight log, just pass { '"highlight': True} to the required log’s extra dict:

slash.logger.info ("hey", extra={"highlight": True})

Tip: The log.highlights_subpath configuration path is treated just like other logging subpaths, and thus supports all
substitutions and formatting mentioned above

Note: All errors emitted in a session are automatically added to the highlights log

3.10.3 Last Log Symlinks

Slash can be instructed to maintain a symlink to recent logs. This is useful to quickly find the last test executed and
dive into its logs.

* To make slash store a symlink to the last session log file, use log.last_session_symlink

* To make slash store a symlink to the last session log directory, use log.last_session_dir_symlink
» To make slash store a symlink to the last session log file, use log.last_test_symlink

* To make slash store a symlink to the last session log file, use log.last_failed_symlink

Both parameters are strings pointing to the symlink path. In case they are relative paths, they will be computed relative
to the log root directory (see above).

The symlinks are updated at the beginning of each test run to point at the recent log directory.

3.10. Logging 45

Slash Documentation, Release 1.14.0

3.10.4 Silencing Logs

In certain cases you can silence specific loggers from the logging output. This is done with the log.silence_loggers
config path:

slash run -i -o "log.silence_loggers=['a','b"']"

3.10.5 Changing Formats

The log.format config path controls the log line format used by slash:

’$ slash run -o log.format="[{record.time:%Y¥%m%d}]- {record.message}"

3.11 Saving Test Details

Slash supports saving additional data about test runs, by attaching this data to the global result object.

3.11.1 Test Details

Test details can be thought of as an arbitrary dictionary of values, keeping important information about the session that
can be later browsed by reporting tools or plugins.

To set a detail, just use result .details. set, accessible through Slash’s global context:

def test_steering_wheel (car) :
mileage = car.get_mileage ()
slash.context.result.details.set ('mileage', mileage)

3.11.2 Test Facts

Facts are very similar to details but they are intended for a more strict set of values, serving as a basis for coverage
matrices.

For instance, a test reporting tool might want to aggregate many test results and see which ones succeeded on model
A of the product, and which on model B.

To set facts, use result . facts just like the details feature:

def test_steering_wheel (car) :
slash.context.result.facts.set('is_van', car.is_van())

Note: facts also trigger the fact_set hook when set

Note: The distinction of when to use details and when to use facts is up for the user and/or the plugins that consume
that information

46 Chapter 3. Table Of Contents

hooks.html#fact_set

Slash Documentation, Release 1.14.0

3.12 Hooks

Slash leverages the gossip library to implement hooks. Hooks are endpoints to which you can register callbacks to be
called in specific points in a test session lifetime.

All built-in hooks are members of the s1ash gossip group. As a convenience, the hook objects are all kept as globals
inthe slash.hooks module.

The slash gossip group is set to be both strict (See Gossip strict registrations) and has exception policy set to
RaiseDefer (See Gossip error handling).

3.12.1 Registering Hooks

Hooks can be registered through slash.hooks:

import slash

@slash.hooks.session_start.register
def handler():
print ("Session has started: ", slash.context.session)

Which is roughly equivalent to:

import gossip

@gossip.register("slash.session_start")
def handler () :
print ("Session has started: ", slash.context.session)

3.12.2 Hook Errors

By default, exceptions propagate from hooks and on to the test, but first all hooks are attempted. In some cases though
you may want to debug the exception close to its raising point. Setting debug.debug _hook_handlers to True will
cause the debugger to be triggered as soon as the hook dispatcher encounteres the exception. This is done via gossip’s
error handling mechanism.

3.12.3 Hooks and Plugins

Hooks are especially useful in conjunction with Plugins. By default, plugin method names correspond to hook names
on which they are automatically registered upon activation.

See also:

Plugins

3.12.4 Advanced Usage

You may want to further customize hook behavior in your project. Mose of these customizations are available through
gossip.

See also:

Advanced Usage In Gossip

3.12. Hooks 47

http://gossip.readthedocs.org
http://gossip.readthedocs.org/en/latest/advanced.html#strict-registration
http://gossip.readthedocs.org/en/latest/error_handling.html
http://gossip.readthedocs.org/en/latest/error_handling.html
http://gossip.readthedocs.org/en/latest/error_handling.html
http://gossip.readthedocs.org/en/latest/advanced.html

Slash Documentation, Release 1.14.0

See also:

Hook Dependencies

3.12.5 Available Hooks

The following hooks are available from the slash.hooks module:

slash.hooks.after_session_end

Called right after session_end hook

slash.hooks.after_session_start

Second entry point for session start, useful for plugins relying on other plugins’ session_start routine

slash.hooks.app_quit

Called right before the app quits

slash.hooks.before_interactive_shell(namespace)

Called before starting interactive shell

slash.hooks.before_session_cleanup

Called right before session cleanup begins

slash.hooks.before_session_start

Entry point which is called before session_start, useful for configuring plugins and other global resources

slash.hooks.before_test_cleanups

Called right before a test cleanups are executed

slash.hooks.before_worker_start(worker_config)

Called in parallel execution mode, before the parent starts the child worker

slash.hooks.configure

Configuration hook that happens during commandline parsing, and before plugins are activated. It is a convenient
point to override plugin activation settings

48 Chapter 3. Table Of Contents

http://gossip.readthedocs.org/en/latest/hook_dependencies.html

Slash Documentation, Release 1.14.0

slash.hooks.entering_debugger(exc_info)

Called right before entering debugger

slash.hooks.error_added(error, result)

Called when an error is added to a result (either test result or global)

slash.hooks.exception_caught_after_debugger

Called whenever an exception is caught, and a debugger has already been run

slash.hooks.exception_caught_before_debugger

Called whenever an exception is caught, but a debugger hasn’t been entered yet

slash.hooks.fact_set(name, value)

Called when a fact is set for a test

slash.hooks.interruption_added(result, exception)

Called when an exception is encountered that triggers test or session interruption

slash.hooks.log_file_closed(path, result)

Called right after a log file was closed

slash.hooks.prepare_notification(message)

Called with a message object prior to it being sent via the notifications plugin (if enabled)

slash.hooks.result_summary

Called at the end of the execution, when printing results

slash.hooks.session_end

Called right before the session ends, regardless of the reason for termination

slash.hooks.session_interrupt

Called when the session is interrupted unexpectedly

slash.hooks.session_start

Called right after session starts

3.12. Hooks

49

Slash Documentation, Release 1.14.0

slash.hooks.test_avoided(reason)

Called when a test is skipped completely (not even started)

slash.hooks.test_distributed(test_logical_id, worker_session_id)

Called in parallel mode, after the parent sent a test to child)

slash.hooks.test_end

Called right before a test ends, regardless of the reason for termination

slash.hooks.test_error

Called on test error

slash.hooks.test_failure

Called on test failure

slash.hooks.test_interrupt

Called when a test is interrupted by a KeyboardInterrupt or other similar means

slash.hooks.test_skip(reason)

Called on test skip

slash.hooks.test_start

Called right after a test starts

slash.hooks.test_success

Called on test success

slash.hooks.tests_loaded(tests)

Called when Slash finishes loading a batch of tests for execution (not necessarily al tests)

slash.hooks.warning_added(warning)

Called when a warning is captured by Slash

slash.hooks.worker_connected(session_id)

Called on new worker startup

50 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

3.13 Plugins

Plugins are a comfortable way of extending Slash’s behavior. They are objects inheriting from a common base
c1lass that can be activated to modify or what happens in select point of the infrastructure.

3.13.1 The Plugin Interface

Plugins have several special methods that can be overriden, like get__name or configure argument_parser.
Except for these methods and the ones documented, each public method (i.e. a method not beginning with an under-
score) must correspond to a slash hook by name.

The name of the plugin should be returned by get_ name. This name should be unique, and not shared by any other
plugin.
3.13.2 Plugin Discovery

Plugins can be loaded from multiple locations.

Search Paths

First, the paths in plugins.search_paths are searched for python files. For each file, a function called
install_plugins is called (assuming it exists), and this gives the file a chance to install its plugins.

3.13.3 Plugin Installation

To install a plugin, use the slash.plugins.manager.install function, and pass it the plugin class that is
being installed. Note that installed plugins are not active by default, and need to be explicitly activated (see below).
Only plugins that are P1uginInterface derivative instances are accepted.

To uninstall plugins, you can use the slash.plugins.manager.uninstall.

Note: uninstalling plugins also deactivates them.

Internal Plugins

By default, plugins are considered “external”’, meaning they were loaded by the user (either directly or indirectly).
External plugins can be activated and deactivated through the command-line using ——with-<plugin name> and
——without-<plugin name>.

In some cases, though, you may want to install a plugin in a way that would not let the user disable it externally. Such
plugins are considered “internal”, and cannot be deactivated through the command line.

You can install a plugin as an internal plugin by passing internal=True to the install function.

3.13. Plugins 51

Slash Documentation, Release 1.14.0

3.13.4 Plugin Activation

Plugins are activated via slash.plugins.manager.activate and deactivated via slash.plugins.
manager.deactivate.

During the activation all hook methods get registered to their respective hooks, so any plugin containing an unknown
hook will trigger an exception.

Note: by default, all method names in a plugin are assumed to belong to the slash gossip group. This means that
the method session_start will register on slash.session_start. You can override this behavior by using
slash.plugins.registers_on():

from slash.plugins import registers_on

class MyPlugin (PluginInterface):
Qregisters_on('some_hook")
def func(self):

registers_on (None) has a special meaning - letting Slash know that this is not a hook entry point, but a private
method belonging to the plugin class itself.

See also:
Hooks

Activating plugins from command-line is usually done with the ——with- prefix. For example, to activate a plugin
called test-plugin, you can pass ——with-test-plugin when running slash run.

Also, since some plugins can be activated from other locations, you can also override and deactivate plugins using
—-—without-X (e.g. ——without-test-plugin).

Conditionally Registering Hooks

You can make the hook registration of a plugin conditional, meaning it should only happen if a boolean condition is
True.

This can be used to create plugins that are compatible with multiple versions of Slash:

class MyPlugin (PluginInterface):

@slash.plugins.register_if (int (slash.__version__.split('."')[0]) >= 1)
def shiny_new_hook (self) :

See also:
slash.plugins.register_1if()
3.13.5 Plugin Command-Line Interaction

In many cases you would like to receive options from the command line. Plugins can implement the
configure_argument_parser and the configure_parsed_args functions:

52 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

class ResultsReportingPlugin (PluginInterface):

def configure_argument_parser (self, parser):
parser.add_argument ("-—-output—-filename", help="File to write results to")

def configure_from_parsed_args(self, args):
self.output_filename = args.output_filename

3.13.6 Plugin Configuration

Plugins can override the con fig method to provide configuration to be placed under plugin_config.<plugin
name>:

class LogCollectionPlugin (PluginInterface):

def get_default_config(self):
return {
'log_destination': '/some/default/path'
}

The configuration is then accessible with get_ current_ config property.

3.13.7 Plugin Examples

An example of a functioning plugin can be found in the Customizing and Extending Slash section.

3.13.8 Errors in Plugins

As more logic is added into plugins it becomes more likely for exceptions to occur when running their logic. As
seen above, most of what plugins do is done by registering callbacks onto hooks. Any exception that escapes these
registered functions will be handled the same way any exception in a hook function is handled, and this depends on
the current exception swallowing configuration.

See also:
* exception swallowing

e hooks documentation

3.13.9 Plugin Dependencies

Slash supports defining dependencies between plugins, in a mechanism closely related to to gossip’s hook dependen-
cies. The purpose of these dependencies is to make sure a certain hook registration in a specific plugin (or all such
hooks for that matter) is called before or after equivalent hooks on other plugins.

Notable examples of why you might want this include, among many other cases:
* Plugins reporting test status needing a state computed by other plugins
* Error handling plugins wanting to be called first in certain events

* Log collection plugins wanting to be called only after all interesting code paths are logged

3.13. Plugins 53

http://gossip.readthedocs.org/en/latest/hook_dependencies.html
http://gossip.readthedocs.org/en/latest/hook_dependencies.html

Slash Documentation, Release 1.14.0

Defining Plugin Dependencies

Defining dependencies is done primarily with two decorators Slash provides: @slash.plugins.needs and
@slash.plugins.provides. Both of these decorators use string identifiers to denote the dependencies used.
These identifiers are arbitrary, and can be basically any string, as long as it matches between the dependent plugin and
the providing plugin.

Several use cases exist:

Hook-Level Dependencies

Adding the slash.plugins.needs or slash.plugins.provides decorator to a specific hook method on a
plugin indicates that we would like to depend on or be the dependency accordingly. For example:

class TestIdentificationPlugin(PluginInterface):

@slash.plugins.provides ('awesome_test_id")
def test_start (self):
slash.context.test.awesome_test_id = awesome_id_allocation_service ()

class TestIdentificationLoggingPlugin (PluginInterface):

@slash.plugins.needs ('awesome_test_id")
def test_start (self):
slash.logger.debug('Test has started with the awesome id of ', slash.
—scontext.test.awesome_id)

In the above example, the test_start hook on TestIdentificationLoggingPlugin needs
the test_start of TestIdentificationPlugin to be called first, and thus requires the
'awesome_test_id" identifier which is provided by the latter.

Plugin-Level Dependencies

Much like hook-level dependencies, you can decorate the entire plugin with the needs and provides decorators,
creating a dependency on all hooks provided by the plugin:

@slash.plugins.provides ('awesome_test_id")
class TestIdentificationPlugin(PluginInterface):

def test_start (self):
slash.context.test.awesome_test_id = awesome_id_allocation_service ()

@slash.plugins.needs ('awesome_test_id")
class TestIdentificationLoggingPlugin (PluginInterface):

def test_start (self):
slash.logger.debug('Test has started with the awesome id of ', slash.
—scontext.test.awesome_id)

The above example is equivalent to the previous one, only now future hooks added to either of the plugins will
automatically assume the same dependency specifications.

Note: You can use provides and needs in more complex cases, for example specifying needs on a specific
hook in one plugin, where the entire other plugin is decorated with provides (at plugin-level).

54 Chapter 3. Table Of Contents

Slash Documentation, Release 1.14.0

Note: Plugin-level provides and needs also get transferred upon inheritence, automatically adding the dependency
configuration to derived classes.

3.13.10 Plugin Manager

As mentioned above, the Plugin Manager provides API to activate (or deacativate) and install (or uninstall) plugins.
Additionally, it provides access to instances of registered plugins by their name via slash.plugins.manager.
get_plugin. This could be used to access plugin attributes whose modification (e.g. by fixtures) can alter the
plugin’s behavior.

3.13.11 Plugins and Parallel Runs
Not all plugins can support parallel execution, and for others implementing support for it can be much harder than
supporting non-parallel runs alone.

To deal with this, in addition to possible mistakes or corruption caused by plugins incorrectly used in parallel mode,
Slash requires each plugin to indicate whether or not it supports parallel execution. The assumption is that by default
plugins do not support parallel runs at all.

To indicate that your plugin supports parallel execution, use the plugins.parallel mode marker:

from slash.plugins import PluginInterface, parallel_mode

@parallel _mode ('enabled')
class MyPlugin (PluginInterface):

parallel_mode supports the following modes:
* disabled - meaning the plugin does not support parallel execution at all. This is the default.

e parent-only - meaning the plugin supports parallel execution, but should be active only on the parent pro-
cess.

* child-only - meaning the plugin should only be activated on worker/child processes executing the actual
tests.

* enabled - meaning the plugin supports parallel execution, both on parent and child.

3.14 Built-in Plugins

Slash comes with pre-installed, built-in plugins that can be activated when needed.

3.14.1 Coverage

This plugins tracks and reports runtime code coverage during runs, and reports the results in various formats. It uses
the Net Batchelder’s coverage package.

To use it, run Slash with ——with-coverage, and optionally specify modules to cover:

$ slash run --with-coverage --cov mypackage —--cov-report html

3.14. Built-in Plugins 55

https://coverage.readthedocs.io/en/

Slash Documentation, Release 1.14.0

3.14.2 Notifications

The notifications plugin allows users to be notified when sessions end in various methods, or notification mediums.

To use it, run Slash with ——with-notifications. Please notice that each notification type requires additional
configuration values. You will also have to enable your desired backend with ——notify—-<backend name> (e.g.
——notify-email)

For e-mail notification, you’ll need to configure your SMTP server, and pass the recipients using ——email-to:

$ slash run —--notify-email —--with-notifications -o plugin_config.notifications.email.
—smtp_server="'my-smtp-server.com --email-to youremail@company.com'

For using Slack notification, you should firstly configure slack webhook integration. And run slash:

$ slash run —--with-notifications -o plugin_config.notifications.slack.url="'your-
—webhook—-ingetration-url' -o plugin_config.notifications.slack.channel="'@myslackuser’

Including Details in Notifications

You can include additional information in your notifications, which is then sent as a part of email messages you receive.
This can be done with the prepare_notification hook:

@slash.hooks.prepare_notification.register
def prepare_notification (message):
message.details_dict['additional_ information'] = 'some information included'

3.14.3 XUnit

The xUnit plugin outputs an XML file when sessions finish running. The XML conforms to the xunit format, and thus
can be read and processed by third party tools (like CI services, for example)

Use it by running with ——with-xunit and by specifying the output filename with ——xunit-filename:

$ slash run —--with-xunit --xunit-filename xunit.xml

3.14.4 Signal handling
The signal handling plugin allows users to register handlers for OS signals. By default, the plugin